Loss of STAT1 in Bone Marrow-Derived Cells Accelerates Skeletal Muscle Regeneration
نویسندگان
چکیده
BACKGROUND Skeletal muscle regeneration is a complex process which is not yet completely understood. Evidence suggested that the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway may have a role in myogenesis. In this study, we aim to explore the possible role of STAT1 in muscle regeneration. METHODS Wild-type and STAT1 knockout mice were used in this study. Tibialis anterior muscle injury was conducted by cardiotoxin (CTX) injection. Bone marrow transplantation and glucocorticoid treatment were performed to manipulate the immune system of the mice. RESULTS Muscle regeneration was accelerated in STAT1-/- mice after CTX injury. Bone marrow transplantation experiments showed that the regeneration process relied on the type of donor mice rather than on recipient mice. Levels of pro-inflammatory cytokines, TNFα and IL-1β, were significantly higher in STAT1-/- mice at 1 day and/or 2 days post-injury, while levels of anti-inflammatory cytokine, IL-10, were lower in STAT1-/- mice at 2 days and 3 days post-injury. Levels of IGF-1 were significantly higher in the STAT1-/- mice at 1 day and 2 days post-injury. Furthermore, the muscle regeneration process was inhibited in glucocorticoid-treated mice. CONCLUSIONS Loss of STAT1 in bone marrow-derived cells accelerates skeletal muscle regeneration.
منابع مشابه
The effect of bone marrow mesenchymal stem cells on recovery of skeletal muscle after neurotization surgery in rat
Objective(s): When the nerve is injured near its entrance to the muscle belly, we cannot perform conventional methods. One useful method in such a situation is neurotization surgery. In this study, Bone marrow mesenchymal stem cells (BMSCs) implanted into the paralyzed muscle after neurotization surgery. These cells can stimulate axon growth and motor endplate formation, also prevent muscle atr...
متن کاملDistinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration.
Vascular progenitors were previously isolated from blood and bone marrow; herein, we define the presence, phenotype, potential, and origin of vascular progenitors resident within adult skeletal muscle. Two distinct populations of cells were simultaneously isolated from hindlimb muscle: the side population (SP) of highly purified hematopoietic stem cells and non-SP cells, which do not reconstitu...
متن کاملDifferentiation Potential and Culture Requirements of Mesenchymal Stem Cells from Ovine Bone Marrow for Tissue Regeneration Applications
Objectives- To isolate, culture-expand and differentiate mesenchymal stem cells from ovine bone marrow and determine their culture requirements for high expansion rate. Design- Experimental study. Animals- Five Shal sheep. Procedures- In this study, ovine marrow cells were plated and culture expanded through 3 successive subcultures. The resultant cells were then plated at differentiating condi...
متن کاملThe Long-term Effects of Uncultured Omental Adipose-derived Nucleated Cells Fraction and Bone-marrow Stromal Cells on Sciatic Nerve Regeneration
Objective- Adipose tissue is an appropriate source for isolation of cells with stem-cell–like properties. In the present long-term study, the effects of the omental adipose-derived nucleated cells (OADNCs) fraction were compared to those of the undifferentiated cultured bone marrow stromal cells (BMSCs) on sciatic nerve regeneration. Design- Experimental in vivo study. Animals- Fift...
متن کاملCellular and molecular regulation of muscle regeneration.
Under normal circumstances, mammalian adult skeletal muscle is a stable tissue with very little turnover of nuclei. However, upon injury, skeletal muscle has the remarkable ability to initiate a rapid and extensive repair process preventing the loss of muscle mass. Skeletal muscle repair is a highly synchronized process involving the activation of various cellular responses. The initial phase o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012